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5.5 Rutherford Scattering Formula

Rutherford’s experiment of a-particles scattering by the atoms in a thin foil of gold
revealed the existence of positively charged nucleus in the atom.

» The a-particles were scattered in all
directions.

Gold Foil

a -Particle
emitter

» Some passes undeflected by the foil.

» Some were scattered through larger
angles even back scattered.

» The only valid explanation of large
angle deflection was if the total positive
charge were concentrated at some small
region.

Detecting Screen

> Rutherford called it nucleus.
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Scattering Center




5.5 Rutherford Scattering Formula

Consider an incident charge particle with charge z,e is scattered through a target
with charge z.e.

The trajectory of scattered particles is a hyperbola as shown.

The trajectory of the particles in repulsive field with origin at o' is shown.
In the case of attractive force, center will be at “o”.

when particles are apart at large distance, the total
energy It posses is in form of Kinetic energy
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Where S Is the impact parameter. The trajectory is hyperbola, from equation of conic
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5.5 Rutherford Scattering Formula

Since the differential scattering Cross-Section Is given by.
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5.5 Rutherford Scattering Formula

The total cross section in Centre of mass coordinate system will be
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If 2,=2,2,=79,e=16%x10"1°C, E = 7.9MeV & ry = 10~ “*m

> If we solve the question for a7(8") we get a divergent results.

» The physical reason is that coulomb field, which has infinite range.

» Particles with large impact parameters will be deflected through some angle.

» Hence the small but finite contribution led us to an infinite value for the o, (8").

» In case of atoms, the nuclear coulomb field is screened by electrons around the
nucleus and results in finite range and finite cross-section.

Such field is represented by
a
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“a Is the screening radius.
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Distance of Closest approach
The distance at which scattered particles turned away from the scattering center.
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5.6 Examine the scattering Produced by a Repulsive central force f = kr—3
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o(0)do = , where x is the ratio %/ and E is the energy.

Solution: The repulsive central force is f = ¥/ ; = ku? and the differential equation
for the orbit is
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The solution of this differential equation is
u = Acosyf + Bsiny0
Before the collision particlesisatangle 8 = wand at r = o
u(@ =m) =0
= Acosym + Bcosynr =0
= A = —Btanym
After collision to r = oo at angle 8 = 6, yield the condition
Acosyl; + Bsinyf; =0

Putting the value of A
= —Btanym cosyf; + Bsinyfs =0
= —tanymcosyl; + sinyfs =0
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In terms of x = 9/,
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Putting in equation (1) and squaring both the sides
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No the differential cross section is given by
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