Chapter 5
 Lecture 4
 Rutherford Scattering

Alkhlaq Hussain

5.5 Rutherford Scattering Formula

Rutherford's experiment of α-particles scattering by the atoms in a thin foil of gold revealed the existence of positively charged nucleus in the atom.
$>$ The α-particles were scattered in all directions.
$>$ Some passes undeflected by the foil.
$>$ Some were scattered through larger angles even back scattered.
$>$ The only valid explanation of large angle deflection was if the total positive charge were concentrated at some small
 region.
$>$ Rutherford called it nucleus.

5.5 Rutherford Scattering Formula

5.5 Rutherford Scattering Formula

Consider an incident charge particle with charge $\mathrm{z}_{1} \mathrm{e}$ is scattered through a target with charge $\mathrm{z}_{2} \mathrm{e}$.

The trajectory of scattered particles is a hyperbola as shown.
The trajectory of the particles in repulsive field with origin at o' is shown.
In the case of attractive force, center will be at " 0 ".
when particles are apart at large distance, the total energy it posses is in form of Kinetic energy

$$
\begin{gathered}
k^{\prime}=1 / 2 \mu u_{1}^{\prime 2}=E \\
u_{1}^{\prime}=\sqrt{\frac{2 E}{\mu}}
\end{gathered}
$$

5.5 Rutherford Scattering Formula

We have to find $\sigma\left(\theta^{\prime}\right)=\frac{s}{\sin \theta^{\prime}}\left|\frac{d s}{d \theta^{\prime}}\right|$

$$
l=\mu u_{1}^{\prime} S=S \sqrt{2 \mu E}
$$

Where S is the impact parameter. The trajectory is hyperbola, from equation of conic

$$
\begin{aligned}
& \frac{\alpha}{r}=e \cos \alpha-1 \text { and } \quad \text { for } r \rightarrow \infty \\
& \Rightarrow \cos \alpha=\frac{1}{e}=\frac{1}{\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}}}
\end{aligned}
$$

Now

$$
\cot \alpha=\cot \left(\frac{\pi-\theta^{\prime}}{2}\right)=\tan \frac{\theta^{\prime}}{2}
$$

5.5 Rutherford Scattering Formula

$$
\begin{aligned}
& \cot \alpha=\tan \frac{\theta^{\prime}}{2} \\
& \tan \frac{\theta^{\prime}}{2}=\frac{\cos \alpha}{\sin \alpha}=\frac{\cos \alpha}{\sqrt{1-\cos ^{2} \alpha}} \\
& \tan \frac{\theta^{\prime}}{2}=\frac{\cos \alpha}{\cos \alpha \sqrt{\frac{1}{\cos ^{2} \alpha}-1}} \\
& \tan \frac{\theta^{\prime}}{2}=\frac{1}{\sqrt{\frac{1}{\cos ^{2} \alpha}-1}} \\
& \tan \frac{\theta^{\prime}}{2}=\frac{1}{\sqrt{e^{2}-1}}=\frac{1}{\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}-1}}}
\end{aligned}
$$

5.5 Rutherford Scattering Formula

$\tan \frac{\theta^{\prime}}{2}=\left(\frac{2 E l^{2}}{\mu k^{2}}\right)^{-1 / 2}$
$\tan \frac{\theta^{\prime}}{2}=\frac{k}{l} \sqrt{\frac{\mu}{2 E}}=\frac{k}{l u_{1}^{\prime}}$
Because $u_{1}^{\prime}=\sqrt{\frac{2 E}{\mu}}$
Since $l=\mu u_{1}^{\prime} S$
$\Rightarrow \tan \frac{\theta^{\prime}}{2}=\frac{k}{S \mu u_{1}^{\prime 2}}$
Differentiating with θ^{\prime} above equation can be written as.

$$
\begin{aligned}
& \frac{1}{2} \sec ^{2} \frac{\theta^{\prime}}{2}=\frac{-k}{S^{2} \mu u_{1}^{\prime^{2}}} \frac{d s}{d \theta^{\prime}} \\
& \Rightarrow\left|\frac{d s}{d \theta^{\prime}}\right|=\frac{s^{2} \mu u_{1}^{\prime^{2}}}{2 k \cos ^{2} \frac{\theta^{\prime}}{2}}
\end{aligned}
$$

5.5 Rutherford Scattering Formula

Since the differential scattering Cross-Section is given by.

$$
\begin{aligned}
& \sigma\left(\theta^{\prime}\right)=\frac{S}{\sin \theta^{\prime}}\left|\frac{d s}{d \theta^{\prime}}\right| \\
& \sigma\left(\theta^{\prime}\right)=\frac{S}{2 \sin \frac{\theta^{\prime}}{2} \cos \frac{\theta^{\prime}}{2}} \frac{S^{2} \mu u_{1}^{\prime 2}}{2 k \cos ^{2} \frac{\theta^{\prime}}{2}} \\
& \sigma\left(\theta^{\prime}\right)=\frac{S^{3} \mu u_{1}^{\prime 2}}{4 k \sin \frac{\theta^{\prime}}{2} \cos ^{3} \frac{\theta^{\prime}}{2}} \\
& \text { Since } \tan \frac{\theta^{\prime}}{2}=\frac{k}{S \mu u_{1}^{\prime^{2}}} \\
& \Rightarrow S=\frac{k \quad \cos \frac{\theta^{\prime}}{2}}{\mu u_{1}^{\prime 2} \sin \frac{\theta^{\prime}}{2}} \quad \text { Putting in above equation }
\end{aligned}
$$

5.5 Rutherford Scattering Formula

$$
\begin{aligned}
& \sigma\left(\theta^{\prime}\right)=\left(\frac{k^{3}}{\mu^{3} u_{1}^{\prime 6}} \frac{\cos ^{3} \frac{\theta^{\prime}}{2}}{\sin ^{3} \frac{\theta^{\prime}}{2}}\right) \cdot \frac{\mu u_{1}^{\prime 2}}{4 k \sin \frac{\theta^{\prime}}{2} \cos ^{3} \frac{\theta^{\prime}}{2}} \\
& \sigma\left(\theta^{\prime}\right)=\frac{k^{2}}{\mu^{2} u_{1}^{\prime 4}} \cdot \frac{1}{4 \sin ^{4} \frac{\theta^{\prime}}{2}} \\
& \sigma\left(\theta^{\prime}\right)=\frac{k^{2}}{4 E^{2}} \cdot \frac{1}{4 \sin ^{4} \frac{\theta^{\prime}}{2}}
\end{aligned}
$$

Since $\quad|k|=z_{1} z_{2} e^{2}$, Therefore,

$$
\sigma\left(\theta^{\prime}\right)=\frac{k^{2}}{4 E^{2}} \cdot \frac{1}{4 \sin ^{4} \frac{\theta^{\prime}}{2}}=\frac{\left(z_{1} z_{2} e^{2}\right)^{2}}{4 E^{2}} \cdot \frac{1}{4 \sin ^{4} \frac{\theta^{\prime}}{2}}
$$

5.5 Rutherford Scattering Formula

The total cross section in Centre of mass coordinate system will be

$$
\begin{aligned}
& \sigma_{C . M}\left(\theta^{\prime}\right)=2 \pi \int \sigma\left(\theta^{\prime}\right) \sin \theta^{\prime} d \theta^{\prime} \\
& \sigma_{C . M}\left(\theta^{\prime}\right)=2 \pi \int \frac{\left(z_{1} z_{2} e^{2}\right)^{2}}{4 E^{2}} \cdot \frac{1}{4 \sin ^{4} \frac{\theta^{\prime}}{2}} \sin \theta^{\prime} d \theta^{\prime} \\
& \sigma_{C . M}\left(\theta^{\prime}\right)=\pi \frac{\left(z_{1} z_{2} e^{2}\right)^{2}}{2 E^{2}} \int \frac{1}{4 \sin ^{4} \frac{\theta^{\prime}}{2}}\left(2 \sin \frac{\theta^{\prime}}{2} \cos \frac{\theta^{\prime}}{2}\right) d \theta^{\prime} \\
& \sigma_{C . M}\left(\theta^{\prime}\right)=\frac{z_{1}^{2} z_{2}^{2} e^{4} \pi}{4 E^{2}} \int \operatorname{cosec}^{3} \frac{\theta^{\prime}}{2} \cos \frac{\theta^{\prime}}{2} d \theta^{\prime}
\end{aligned}
$$

5.5 Rutherford Scattering Formula

If $z_{1}=2, z_{2}=79, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, E=7.9 \mathrm{MeV} \quad \& r_{0}=10^{-14} \mathrm{~m}$.
$>$ If we solve the question for $\boldsymbol{\sigma}_{\boldsymbol{T}}\left(\boldsymbol{\theta}^{\prime}\right)$ we get a divergent results.
$>$ The physical reason is that coulomb field, which has infinite range.
$>$ Particles with large impact parameters will be deflected through some angle.
$>$ Hence the small but finite contribution led us to an infinite value for the $\boldsymbol{\sigma}_{\boldsymbol{C} . \boldsymbol{M}}\left(\boldsymbol{\theta}^{\prime}\right)$.
$>$ In case of atoms, the nuclear coulomb field is screened by electrons around the nucleus and results in finite range and finite cross-section.

Such field is represented by

$$
V=\frac{1}{r} e^{-r / a}
$$

" a is the screening radius.

5.5 Rutherford Scattering Formula

Distance of Closest approach

The distance at which scattered particles turned away from the scattering center.

$$
\begin{aligned}
& r_{1}=a(1+e) \\
& r_{1}=\frac{z_{1} z_{2} e^{2}}{2 E}\left[1+\sqrt{1+\frac{2 E l^{2}}{z_{1}^{2} z_{2}^{2} e^{4} \mu}}\right]
\end{aligned}
$$

$$
a=\frac{k}{2 E}=\frac{z_{1} z_{2} e^{2}}{2 E}
$$

For the smallest distance l must be zero.
Therefore,

$$
\begin{aligned}
& r_{1(\text { min })}=r_{0}=\frac{z_{1} z_{2} e^{2}}{2 E}[1+1] \\
& r_{1(\text { min })}=\frac{z_{1} z_{2} e^{2}}{E} \\
& E=\frac{z_{1} z_{2} e^{2}}{r_{0}}
\end{aligned}
$$

$\sigma(\theta) d \theta=\frac{k}{2 E} \cdot \frac{(1-x) d x}{x^{2}(2-x)^{2} \sin \pi x}$, where x is the ratio θ_{S} / π and E is the energy.

Solution: The repulsive central force is $f=k / r^{3}=k u^{3}$ and the differential equation for the orbit is

$$
\begin{align*}
& \frac{d^{2} u}{d \theta^{2}}+u=-\frac{\mu f_{(u)}}{l^{2} u^{2}}=-\frac{\mu k u^{3}}{l^{2} u^{2}} \\
& \Rightarrow \frac{d^{2} u}{d \theta^{2}}+\left(1+\frac{\mu k}{l^{2}}\right) u=0 \\
& \Rightarrow \frac{d^{2} u}{d \theta^{2}}+\gamma^{2} u=0 \\
& \gamma=\sqrt{1+\frac{\mu k}{l^{2}}} \tag{1}
\end{align*}
$$

The solution of this differential equation is

$$
u=A \cos \gamma \theta+\mathrm{B} \sin \gamma \theta
$$

Before the collision particles is at angle $\theta=\pi$ and at $r=\infty$

$$
\begin{align*}
& \quad u(\theta=\pi)=0 \\
& \Rightarrow A \cos \gamma \pi+B \cos \gamma \pi=0 \\
& \Rightarrow A=-B \tan \gamma \pi \tag{a}
\end{align*}
$$

After collision to $r=\infty$ at angle $\theta=\theta_{s}$ yield the condition

$$
A \cos \gamma \theta_{s}+B \sin \gamma \theta_{s}=0
$$

Putting the value of A

$$
\begin{aligned}
& \Rightarrow-B \tan \gamma \pi \cos \gamma \theta_{s}+B \sin \gamma \theta_{S}=0 \\
& \quad \Rightarrow-\tan \gamma \pi \cos \gamma \theta_{s}+\sin \gamma \theta_{S}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-\frac{\sin \gamma \pi}{\cos \gamma \pi} \cos \gamma \theta_{s}+\sin \gamma \theta_{s}=0 \\
& \Rightarrow-\sin \gamma \pi \cos \gamma \theta_{s}+\sin \gamma \theta_{s} \cos \gamma \pi=0 \\
& \Rightarrow \sin \gamma\left(\theta_{s}-\pi\right)=0 \\
& \Rightarrow \gamma\left(\theta_{s}-\pi\right)=\sin ^{-1}(0)=\pi \\
& \Rightarrow \gamma=\frac{\pi}{\theta_{s}-\pi}=\frac{\pi}{\pi\left(\frac{\theta_{S}}{\pi}-1\right)}
\end{aligned}
$$

In terms of $x=\theta / \pi$

$$
\gamma=\frac{1}{x-1}
$$

Putting in equation (1) and squaring both the sides

$$
1+\frac{\mu k}{l^{2}}=\frac{1}{(x-1)^{2}}
$$

$$
\begin{aligned}
& \Rightarrow 1+\frac{\mu k}{\left(2 \mu E S^{2}\right)}=\frac{1}{(x-1)^{2}} \\
\Rightarrow & \frac{\mu k}{2 \mu E S^{2}}=\frac{1}{(x-1)^{2}}-1 \\
\Rightarrow & \frac{k}{2 E S^{2}}=\frac{1-(x-1)^{2}}{(x-1)^{2}} \\
\Rightarrow & \frac{k}{2 E S^{2}}=\frac{1-1-x^{2}+2 x}{(x-1)^{2}}=\frac{-x(x-2)}{(x-1)^{2}} \\
\Rightarrow & S^{2}=-\frac{k}{2 E} \frac{(x-1)^{2}}{x(x-2)}=-\frac{k}{2 E}(x-1)^{2} x^{-1}(x-2)^{-1}
\end{aligned}
$$

Differentiating above equation

$$
\Rightarrow 2 S d S=-\frac{k}{2 E}\left[\frac{2(x-1)}{x(x-2)}-\frac{(x-1)^{2}}{x^{2}(x-2)}-\frac{(x-1)^{2}}{x(x-2)^{2}}\right] d x
$$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{~S} d S=-\frac{k}{2 E}\left[\frac{2 x(x-1)(x-2)-(x-1)^{2}(x-2)-x(x-1)^{2}}{x^{2}(x-2)^{2}}\right] \mathrm{dx} \\
& \Rightarrow 2 \mathrm{~S} d S=-\frac{k}{2 E}\left[(x-1)\left\{\frac{2 x(x-2)-(x-1)(x-2)-x(x-1)}{x^{2}(x-2)^{2}}\right\}\right] \mathrm{dx} \\
& \Rightarrow 2 \mathrm{~S} d S=-\frac{k}{2 E}\left[(x-1)\left\{\frac{2 x^{2}-4 x-x^{2}+3 x-2-x^{2}+x}{x^{2}(x-2)^{2}}\right\}\right] \mathrm{dx} \\
& \Rightarrow 2 S d S=-\frac{k}{2 E}\left[(1-x)\left\{\frac{-2}{x^{2}(x-2)^{2}}\right\}\right] \mathrm{dx} \\
& \Rightarrow S d S=-\frac{k}{2 E} \frac{(1-x)}{x^{2}(2-x)^{2}} \mathrm{dx}
\end{aligned}
$$

No the differential cross section is given by

$$
\sigma(\theta) d \theta=\frac{|S d S|}{\sin \theta}
$$

$$
\Rightarrow \sigma(\theta) d \theta=\frac{k}{2 E} \frac{(1-x)}{x^{2}(2-x)^{2}} \frac{1}{\sin \pi x} \mathrm{dx}
$$

